Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Jun 27 2022 11:13:01
%S 1,1,1,9,7,49,33,169,7,7,207,237,91,313,261,273,79,49,2901,51,441,193,
%T 9,531,289,1141,67,909,331,753,2613,657,49,4459,603,1531,849,2049,259,
%U 649,2119,1483,63,6747,519,3133,937,1159,1999,6921,2949,613,4137,1977,31
%N Distance of the least reversible n-digit prime from 10^(n-1)
%C A (much) more compact form of A114018 (cf. formula). Since this sequence and A114018 refer to "reversible primes" (A007500), while A122490 seems to use "emirps" (A006567), a(n+1) differs from A122490(n) iff 10^n+1 is prime <=> a(n+1)=1 <=> A114018(n)=10^n+1.
%H Michael S. Branicky, <a href="/A168159/b168159.txt">Table of n, a(n) for n = 1..500</a>
%F a(n)=A114018(n)-10^(n-1)
%t Table[p = NextPrime[y = 10^(n - 1)]; While[! PrimeQ[FromDigits[Reverse[IntegerDigits[p]]]], p = NextPrime[p]]; p - y, {n, 55}] (* _Jayanta Basu_, Aug 09 2013 *)
%o (PARI) for(x=1,1e99, until( isprime(x=nextprime(x+1)) & isprime(eval(concat(vecextract(Vec(Str(x)),"-1..1")))),);print1(x-10^ (#Str(x)-1),", "); x=10^#Str(x)-1)
%o (Python)
%o from sympy import isprime
%o def c(n): return isprime(n) and isprime(int(str(n)[::-1]))
%o def a(n): return next(p-10**(n-1) for p in range(10**(n-1), 10**n) if c(p))
%o print([a(n) for n in range(1, 56)]) # _Michael S. Branicky_, Jun 27 2022
%K base,nonn
%O 1,4
%A _M. F. Hasler_, Nov 21 2009