The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114018 Least n-digit prime whose digit reversal is also prime. 8
 2, 11, 101, 1009, 10007, 100049, 1000033, 10000169, 100000007, 1000000007, 10000000207, 100000000237, 1000000000091, 10000000000313, 100000000000261, 1000000000000273, 10000000000000079, 100000000000000049, 1000000000000002901, 10000000000000000051 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The more compact version A168159 gives many more terms, cf. formula. [M. F. Hasler, Nov 21 2009] LINKS Michael S. Branicky, Table of n, a(n) for n = 1..500 (terms 1..100 from Harvey P. Dale) FORMULA a(n) = 10^(n-1) + A168159(n). [M. F. Hasler, Nov 21 2009] MATHEMATICA f[n_] := Block[{k = 10^(n - 1)}, While[ !PrimeQ[k] || !PrimeQ[FromDigits@Reverse@IntegerDigits@k], k++ ]; k]; Array[f, 19] (* Robert G. Wilson v, Nov 19 2005 *) lndp[n_]:=Module[{p=NextPrime[10^n]}, While[CompositeQ[IntegerReverse[ p]], p = NextPrime[ p]]; p]; Array[lndp, 20, 0] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 05 2019 *) PROG (PARI) for(x=1, 1e99, until( isprime(x=nextprime(x+1)) & isprime(eval(concat(vecextract(Vec(Str(x)), "-1..1")))), ); print1(x", "); x=10^#Str(x)-1) \\ M. F. Hasler, Nov 21 2009 (Python) from sympy import isprime def c(n): return isprime(n) and isprime(int(str(n)[::-1])) def a(n): return next(p for p in range(10**(n-1), 10**n) if c(p)) print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 27 2022 CROSSREFS Cf. A168159, A007500, A006567, A122490. [M. F. Hasler, Nov 21 2009] Sequence in context: A062397 A158578 A003617 * A089770 A249447 A199302 Adjacent sequences: A114015 A114016 A114017 * A114019 A114020 A114021 KEYWORD base,nonn AUTHOR Amarnath Murthy, Nov 12 2005 EXTENSIONS More terms from Robert G. Wilson v, Nov 19 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 03:51 EST 2022. Contains 358362 sequences. (Running on oeis4.)