|
|
A167963
|
|
a(n) = n*(n^5 + 1)/2.
|
|
3
|
|
|
0, 1, 33, 366, 2050, 7815, 23331, 58828, 131076, 265725, 500005, 885786, 1492998, 2413411, 3764775, 5695320, 8388616, 12068793, 17006121, 23522950, 32000010, 42883071, 56689963, 74017956, 95551500, 122070325, 154457901, 193710258, 240945166, 297411675
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
|
|
FORMULA
|
G.f.: x*(1 + 26*x + 156*x^2 + 146*x^3 + 31*x^4)/(1-x)^7. - Vincenzo Librandi, Dec 10 2014
E.g.f.: (1/2)*x*(2 + 31*x + 90*x^2 + 65*x^3 + 15*x^4 + x^5)*exp(x). - G. C. Greubel, Jan 17 2023
|
|
MAPLE
|
|
|
MATHEMATICA
|
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 33, 366, 2050, 7815, 23331}, 30] (* Harvey P. Dale, Dec 09 2014 *)
CoefficientList[Series[x (1 + 26 x + 156 x^2 + 146 x^3 + 31 x^4) / (1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 10 2014 *)
|
|
PROG
|
(SageMath) [n*(n^5+1)/2 for n in range(41)] # G. C. Greubel, Jan 17 2023
|
|
CROSSREFS
|
Sequences of the form n*(n^m + 1)/2: A001477 (m=0), A000217 (m=1), A006003 (m=2), A027441 (m=3), A021003 (m=4), this sequence (m=5), A168029 (m=6), A168067 (m=7), A168116 (m=8), A168118 (m=9), A168119 (m=10).
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|