The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A209359 a(n) = 2^n * (n^4 - 4*n^3 + 18*n^2 - 52*n + 75) - 75. 4
 0, 1, 33, 357, 2405, 12405, 53877, 207541, 731829, 2411445, 7531445, 22523829, 64991157, 181977013, 496680885, 1326120885, 3473604533, 8947236789, 22706651061, 56869519285, 140755599285, 344683708341, 835954147253, 2009692372917, 4792831180725, 11346431180725 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS This sequence is related to A036828 by the transform a(n) = n*A036828(n) - sum(A036828(i), i=0..n-1). LINKS Bruno Berselli, Table of n, a(n) for n = 0..1000 B. Berselli, A description of the transform in Comments lines: website Matem@ticamente (in Italian). Index entries for linear recurrences with constant coefficients, signature (11,-50,120,-160,112,-32). FORMULA G.f.: x*(1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5). a(n) = (1/2) * Sum_{k=0..n} Sum_{i=0..n} k^4 * C(k,i). - Wesley Ivan Hurt, Sep 21 2017 MATHEMATICA LinearRecurrence[{11, -50, 120, -160, 112, -32}, {0, 1, 33, 357, 2405, 12405}, 26] Table[2^n(n^4-4n^3+18n^2-52n+75)-75, {n, 0, 30}] (* Harvey P. Dale, Mar 08 2023 *) PROG (Magma) m:=25; R:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1+2*x)*(1+20*x+4*x^2)/((1-x)*(1-2*x)^5))); (PARI) for(n=0, 25, print1(2^n*(n^4-4*n^3+18*n^2-52*n+75)-75", ")); CROSSREFS Cf. A000079, A000337, A036826, A036828. Sequence in context: A121994 A093743 A279638 * A264282 A167963 A085742 Adjacent sequences: A209356 A209357 A209358 * A209360 A209361 A209362 KEYWORD nonn,easy AUTHOR Bruno Berselli, Mar 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 00:10 EDT 2023. Contains 365649 sequences. (Running on oeis4.)