OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,-903).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 903*t^16 - 42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
From G. C. Greubel, Apr 27 2023: (Start)
G.f.: (1 + x)*(1 + x^16)/(1 - 43*x + 903*x^16 - 861*x^17).
a(n) = 42*Sum_{k=1..m-1} a(n-k) - 903*a(n-m). (End)
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17), {x, 0, 50}], x] (* G. C. Greubel, Jul 02 2016; Apr 27 2023 *)
coxG[{16, 903, -42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 19 2021 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17) )); // G. C. Greubel, Apr 27 2023
(SageMath)
def A167960_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17) ).list()
A167960_list(40) # G. C. Greubel, Apr 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved