login
A167960
Number of reduced words of length n in Coxeter group on 44 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
1
1, 44, 1892, 81356, 3498308, 150427244, 6468371492, 278139974156, 11960018888708, 514280812214444, 22114074925221092, 950905221784506956, 40888924536733799108, 1758223755079553361644, 75603621468420794550692
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170763, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (42,42,42,42,42,42,42,42,42,42,42,42,42,42,42,-903).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 903*t^16 - 42*t^15 - 42*t^14 - 42*t^13 - 42*t^12 - 42*t^11 - 42*t^10 - 42*t^9 - 42*t^8 - 42*t^7 - 42*t^6 - 42*t^5 - 42*t^4 - 42*t^3 - 42*t^2 - 42*t + 1).
From G. C. Greubel, Apr 27 2023: (Start)
G.f.: (1 + x)*(1 + x^16)/(1 - 43*x + 903*x^16 - 861*x^17).
a(n) = 42*Sum_{k=1..m-1} a(n-k) - 903*a(n-m). (End)
MATHEMATICA
CoefficientList[Series[(1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17), {x, 0, 50}], x] (* G. C. Greubel, Jul 02 2016; Apr 27 2023 *)
coxG[{16, 903, -42}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Jul 19 2021 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17) )); // G. C. Greubel, Apr 27 2023
(SageMath)
def A167960_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1+x^16)/(1-43*x+903*x^16-861*x^17) ).list()
A167960_list(40) # G. C. Greubel, Apr 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved