The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A167467 a(n) = 25*n^3 - n*(5*n+1)/2 + 1. 2
 23, 190, 652, 1559, 3061, 5308, 8450, 12637, 18019, 24746, 32968, 42835, 54497, 68104, 83806, 101753, 122095, 144982, 170564, 198991, 230413, 264980, 302842, 344149, 389051, 437698, 490240, 546827, 607609, 672736, 742358, 816625, 895687, 979694, 1068796 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Also the real part of f(x+n*f(x,y,z), y+n*f(x,y,z), z+n*f(x,y,z))/f(x,y,z) for f(x,y,z) = x^3+y^2+z at x=(-1+i*sqrt(3))/2, y=i and z=5. If f(x,y,z) is a trivariate polynomial, f(x+n*f(x,y,z),y+n*f(x,y,z),z+n*f(x,y,z)) is congruent to 0 (mod f(x,y,z)). The ratio f(x+n*f,y+n*f,z+n*f)/f of these two functions is decomposed into the real part (this sequence here), and the imaginary part. The imaginary part is 2*n*i + sqrt(3)*A167469(n)*i, where i=sqrt(-1) is the imaginary unit. LINKS Harvey P. Dale, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). G.f.: x*(23 + 98*x + 30*x^2 - x^3)/(1-x)^4. E.g.f.: (2 + 44*x + 145*x^2 + 50*x^3)*exp(x)/2 -1. - G. C. Greubel, Apr 09 2016 EXAMPLE f(x +f(x,y,z), y + f(x,y,z), z + f(x,y,z)) = (23 + 2i + 6*sqrt(3)*i)* f(x,y,z) at n=1. MAPLE f := proc(x, y, z) x^3+y^2+z ; end proc: A167467 := proc(n) local rho, a , x, y, z; a := f(x+n*f(x, y, z), y+n*f(x, y, z), z+n*f(x, y, z))/f(x, y, z) ; rho := (-1+I*sqrt(3))/2 ; a := subs({x = rho, y=I, z=5}, a) ; a := expand(a) ; Re(a) ; end: seq(A167467(n), n=1..50) ; # R. J. Mathar, Nov 12 2009 MATHEMATICA LinearRecurrence[{4, -6, 4, -1}, {23, 190, 652, 1559}, 50] (* Harvey P. Dale, Sep 28 2012 *) PROG (PARI) a(n)=1+25*n^3-n*(5*n+1)/2 \\ Charles R Greathouse IV, Jul 07 2013 (Magma) [25*n^3 - n*(5*n+1)/2 + 1: n in [1..50]]; // G. C. Greubel, Sep 01 2019 (Sage) [25*n^3 - n*(5*n+1)/2 + 1 for n in (1..50)] # G. C. Greubel, Sep 01 2019 (GAP) List([1..50], n-> 25*n^3 - n*(5*n+1)/2 + 1); # G. C. Greubel, Sep 01 2019 CROSSREFS Cf. A165806, A165808, A165809, A166715, A166957, A167190. Sequence in context: A269072 A125360 A126518 * A129052 A201859 A232150 Adjacent sequences: A167464 A167465 A167466 * A167468 A167469 A167470 KEYWORD nonn,easy AUTHOR A.K. Devaraj, Nov 05 2009 EXTENSIONS a(2) and a(3) corrected, definition simplified and sequence extended by R. J. Mathar, Nov 12 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 12:28 EDT 2024. Contains 371641 sequences. (Running on oeis4.)