OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (38,38,38,38,38,38,38,38,38,38,-741).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
From G. C. Greubel, Jul 25 2024: (Start)
a(n) = 38*Sum_{j=1..10} a(n-j) - 741*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 39*x + 779*x^11 - 741*x^12). (End)
MATHEMATICA
coxG[{11, 741, -38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 10 2015 *)
With[{p=741, q=38}, CoefficientList[Series[(1+t)*(1-t^11)/(1 - (q+1)*t + (p+q)*t^11 - p*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 14 2016; Jul 25 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-39*x+779*x^11-741*x^12) )); // G. C. Greubel, Jul 25 2024
(SageMath)
def A166434_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-39*x+779*x^11-741*x^12) ).list()
A166434_list(30) # G. C. Greubel, Jul 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved