login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A166434
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446350360, 325616243407663260, 12699033492898836720, 495262306223053446480, 19315229942699038174320
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170759, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (38,38,38,38,38,38,38,38,38,38,-741).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^11 - 38*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
From G. C. Greubel, Jul 25 2024: (Start)
a(n) = 38*Sum_{j=1..10} a(n-j) - 741*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 39*x + 779*x^11 - 741*x^12). (End)
MATHEMATICA
coxG[{11, 741, -38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 10 2015 *)
With[{p=741, q=38}, CoefficientList[Series[(1+t)*(1-t^11)/(1 - (q+1)*t + (p+q)*t^11 - p*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 14 2016; Jul 25 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-39*x+779*x^11-741*x^12) )); // G. C. Greubel, Jul 25 2024
(SageMath)
def A166434_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-39*x+779*x^11-741*x^12) ).list()
A166434_list(30) # G. C. Greubel, Jul 25 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved