login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166172
Number of reduced words of length n in Coxeter group on 40 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1
1, 40, 1560, 60840, 2372760, 92537640, 3608967960, 140749750440, 5489240267160, 214080370419240, 8349134446349580, 325616243407603200, 12699033492895339200, 495262306222871990400, 19315229942690204328000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170759, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (38, 38, 38, 38, 38, 38, 38, 38, 38, -741).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(741*t^10 - 38*t^9 - 38*t^8 - 38*t^7 - 38*t^6 - 38*t^5 - 38*t^4 - 38*t^3 - 38*t^2 - 38*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^10)/(1-39*t+779*t^10-741*t^11), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Mar 11 2020
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^10)/(1-39*t+779*t^10-741*t^11), {t, 0, 30}], t] (* G. C. Greubel, May 06 2016 *)
coxG[{10, 741, -38}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 31 2017 *)
PROG
(Sage)
def A163878_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P( (1+t)*(1-t^10)/(1-39*t+779*t^10-741*t^11) ).list()
A163878_list(30) # G. C. Greubel, Aug 10 2019
CROSSREFS
Sequence in context: A164684 A165172 A165690 * A166434 A166693 A167093
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved