login
A166410
Number of reduced words of length n in Coxeter group on 16 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1
1, 16, 240, 3600, 54000, 810000, 12150000, 182250000, 2733750000, 41006250000, 615093750000, 9226406249880, 138396093746400, 2075941406169120, 31139121092133600, 467086816375956000, 7006302245548620000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170735, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (14,14,14,14,14,14,14,14,14,14,-105).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(105*t^11 - 14*t^10 - 14*t^9 - 14*t^8 - 14*t^7 - 14*t^6 - 14*t^5 - 14*t^4 - 14*t^3 - 14*t^2 - 14*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 14*Sum_{j=1..10} a(n-j) - 105*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 15*x + 119*x^11 - 105*x^12). (End)
MATHEMATICA
With[{p=105, q=14}, CoefficientList[Series[(1+t)*(1-t^11)/(1-(q+1)*t + (p+q)*t^11-p*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 12 2016; Jul 23 2024 *)
coxG[{11, 105, -14}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 24 2021 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-15*x+119*x^11-105*x^12) )); // G. C. Greubel, Jul 23 2024
(SageMath)
def A166410_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-15*x+119*x^11-105*x^12) ).list()
A166410_list(30) # G. C. Greubel, Jul 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved