login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166372
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
1
1, 12, 132, 1452, 15972, 175692, 1932612, 21258732, 233846052, 2572306572, 28295372292, 311249095146, 3423740045880, 37661140496760, 414272545377240, 4556997998191320, 50126977969563000, 551396757549236280
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,10,10,10,10,10,10,10,10,10,-55).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^11 - 10*t^10 - 10*t^9 - 10*t^8 - 10*t^7 - 10*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
From G. C. Greubel, Dec 06 2024: (Start)
a(n) = 10*Sum_{j=1..10} a(n-j) - 55*a(n-11).
G.f.: (1+x)*(1-x^11)/(1 - 11*x + 65*x^11 - 55*x^12). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^11)/(1-11*t+65*t^11-55*t^12), {t, 0, 50}], t] (* G. C. Greubel, May 10 2016; Dec 06 2024 *)
coxG[{11, 55, -10, 40}] (* The coxG program is at A169452 *) (* G. C. Greubel, Dec 06 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^11)/(1-11*x+65*x^11-55*x^12) )); // G. C. Greubel, Dec 06 2024
(SageMath)
def A166372_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-11*x+65*x^11-55*x^12) ).list()
print(A166372_list(40)) # G. C. Greubel, Dec 06 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved