The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A166371 a(n) = (A166351(n))^2 = ((6*n)!/((3*n)!))^2. 1
 1, 14400, 442597478400, 311283409572495360000, 1677789268237349829381980160000, 41145365786974742781838753372569600000000, 3375889771315468222156818412294164248002560000000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Integral representation as n-th moment of a positive function on a positive half-axis (solution of the Stieltjes moment problem). In Maple notation: a(n)=int(x^n*((1/6)*BesselK(0,(1/2)*x^(1/6))/(x^(5/6)*Pi)), x=0..infinity), n=0,1... . This solution is not unique. LINKS G. C. Greubel, Table of n, a(n) for n = 0..50 FORMULA G.f.: Sum{n>=0} a(n)*x^n/(n!)^6 = hypergeom([1/6, 1/6, 1/2, 1/2, 5/6, 5/6], [1, 1, 1, 1, 1], 2985984*x). Asymptotics: a(n) = (2-1/(18*n) + 1/(1296*n^2)+247/(699840*n^3) + O(1/n^4))*(12^n)^6/((exp(n))^6*((1/n)^n)^6), n->infinity. MATHEMATICA Table[((6*n)!/(3*n)!)^2, {n, 0, 10}] (* G. C. Greubel, May 10 2016 *) PROG (Magma) [(Factorial(6*n)/(Factorial(3*n)))^2: n in [0..20]]; // Vincenzo Librandi, May 11 2016 CROSSREFS Cf. A166351 Sequence in context: A226286 A203729 A144649 * A234487 A234977 A250960 Adjacent sequences: A166368 A166369 A166370 * A166372 A166373 A166374 KEYWORD nonn AUTHOR Karol A. Penson, Oct 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 16:22 EDT 2023. Contains 365579 sequences. (Running on oeis4.)