login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166371
a(n) = (A166351(n))^2 = ((6*n)!/((3*n)!))^2.
1
1, 14400, 442597478400, 311283409572495360000, 1677789268237349829381980160000, 41145365786974742781838753372569600000000, 3375889771315468222156818412294164248002560000000000
OFFSET
0,2
COMMENTS
Integral representation as n-th moment of a positive function on a positive half-axis (solution of the Stieltjes moment problem).
In Maple notation: a(n)=int(x^n*((1/6)*BesselK(0,(1/2)*x^(1/6))/(x^(5/6)*Pi)), x=0..infinity), n=0,1... .
This solution is not unique.
LINKS
FORMULA
G.f.: Sum{n>=0} a(n)*x^n/(n!)^6 = hypergeom([1/6, 1/6, 1/2, 1/2, 5/6, 5/6], [1, 1, 1, 1, 1], 2985984*x).
Asymptotics: a(n) = (2-1/(18*n) + 1/(1296*n^2)+247/(699840*n^3) + O(1/n^4))*(12^n)^6/((exp(n))^6*((1/n)^n)^6), n->infinity.
MATHEMATICA
Table[((6*n)!/(3*n)!)^2, {n, 0, 10}] (* G. C. Greubel, May 10 2016 *)
PROG
(Magma) [(Factorial(6*n)/(Factorial(3*n)))^2: n in [0..20]]; // Vincenzo Librandi, May 11 2016
CROSSREFS
Sequence in context: A226286 A203729 A144649 * A234487 A234977 A250960
KEYWORD
nonn
AUTHOR
Karol A. Penson, Oct 13 2009
STATUS
approved