The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A144649 Second bisection of A134772. 2
0, 14400, 134289792000, 29865588836219136000, 64007711015400701105356800000, 799901135455942846519287494400000000000, 42346525471797343063631567858734790430720000000000, 7611746717262781749937067971966455935937523732684800000000000, 3949387898792061570875758855816554982971495343701121923966566400000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
LINKS
FORMULA
a(n) = A134772(2*n+1). - G. C. Greubel, Oct 13 2023
a(n) ~ sqrt(Pi) * 2^(18*n + 11) * n^(8*n + 9/2) / (3^(2*n+1) * exp(8*n + 3/4)). - Vaclav Kotesovec, Oct 21 2023
MATHEMATICA
A134772[n_]:= ((4*n)!/(24)^n)*Hypergeometric1F1[-n, 1/2-2*n, -3/2];
A144549[n_]:= A134772[2*n+1];
Table[A144549[n], {n, 0, 20}] (* G. C. Greubel, Oct 13 2023 *)
PROG
(Magma)
B:=Binomial; F:=Factorial;
A134772:= func< n | F(4*n)/(24)^n *(&+[B(n, j)*B(2*n, j)*(-6)^j/(F(j)*B(2*j, j)*B(4*n, 2*j)) : j in [0..n]]) >;
A144649:= func< n | A134772(2*n+1) >;
[A144649(n): n in [0..20]]; // G. C. Greubel, Oct 13 2023
(SageMath)
def A134772(n): return (factorial(4*n)/(24)^n)* simplify(hypergeometric([-n], [1/2-2*n], -3/2))
def A144649(n): return A134772(2*n+1)
[A144649(n) for n in range(21)] # G. C. Greubel, Oct 13 2023
CROSSREFS
Cf. A134772.
Sequence in context: A250851 A226286 A203729 * A166371 A234487 A234977
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 18 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 14:45 EDT 2024. Contains 372698 sequences. (Running on oeis4.)