login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144649
Second bisection of A134772.
2
0, 14400, 134289792000, 29865588836219136000, 64007711015400701105356800000, 799901135455942846519287494400000000000, 42346525471797343063631567858734790430720000000000, 7611746717262781749937067971966455935937523732684800000000000, 3949387898792061570875758855816554982971495343701121923966566400000000000
OFFSET
0,2
LINKS
FORMULA
a(n) = A134772(2*n+1). - G. C. Greubel, Oct 13 2023
a(n) ~ sqrt(Pi) * 2^(18*n + 11) * n^(8*n + 9/2) / (3^(2*n+1) * exp(8*n + 3/4)). - Vaclav Kotesovec, Oct 21 2023
MATHEMATICA
A134772[n_]:= ((4*n)!/(24)^n)*Hypergeometric1F1[-n, 1/2-2*n, -3/2];
A144549[n_]:= A134772[2*n+1];
Table[A144549[n], {n, 0, 20}] (* G. C. Greubel, Oct 13 2023 *)
PROG
(Magma)
B:=Binomial; F:=Factorial;
A134772:= func< n | F(4*n)/(24)^n *(&+[B(n, j)*B(2*n, j)*(-6)^j/(F(j)*B(2*j, j)*B(4*n, 2*j)) : j in [0..n]]) >;
A144649:= func< n | A134772(2*n+1) >;
[A144649(n): n in [0..20]]; // G. C. Greubel, Oct 13 2023
(SageMath)
def A134772(n): return (factorial(4*n)/(24)^n)* simplify(hypergeometric([-n], [1/2-2*n], -3/2))
def A144649(n): return A134772(2*n+1)
[A144649(n) for n in range(21)] # G. C. Greubel, Oct 13 2023
CROSSREFS
Cf. A134772.
Sequence in context: A250851 A226286 A203729 * A166371 A234487 A234977
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 18 2009
STATUS
approved