login
A165973
Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
1
1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128905925, 2479553222640000, 61988830565797200, 1549720764139860000, 38743019103369750000, 968575477581075000000
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170745, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (24,24,24,24,24,24,24,24,24,-300).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 26 2019
MATHEMATICA
coxG[{10, 300, -24}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 03 2016 *)
CoefficientList[Series[(1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11), {t, 0, 25}], t] (* G. C. Greubel, Sep 26 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11)) \\ G. C. Greubel, Sep 26 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11) )); // G. C. Greubel, Sep 26 2019
(Sage)
def A165973_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11)).list()
A165973_list(30) # G. C. Greubel, Sep 26 2019
(GAP) a:=[26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128905925];; for n in [11..30] do a[n]:=24*Sum([1..9], j-> a[n-j]) -300*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 26 2019
CROSSREFS
Sequence in context: A164639 A164964 A165369 * A166420 A166613 A167079
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved