The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165973 Number of reduced words of length n in Coxeter group on 26 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I. 1
 1, 26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128905925, 2479553222640000, 61988830565797200, 1549720764139860000, 38743019103369750000, 968575477581075000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The initial terms coincide with those of A170745, although the two sequences are eventually different. Computed with MAGMA using commands similar to those used to compute A154638. LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 Index entries for linear recurrences with constant coefficients, signature (24,24,24,24,24,24,24,24,24,-300). FORMULA G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(300*t^10 - 24*t^9 - 24*t^8 - 24*t^7 - 24*t^6 - 24*t^5 - 24*t^4 - 24*t^3 - 24*t^2 - 24*t + 1). MAPLE seq(coeff(series((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 26 2019 MATHEMATICA coxG[{10, 300, -24}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Mar 03 2016 *) CoefficientList[Series[(1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11), {t, 0, 25}], t] (* G. C. Greubel, Sep 26 2019 *) PROG (PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11)) \\ G. C. Greubel, Sep 26 2019 (Magma) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11) )); // G. C. Greubel, Sep 26 2019 (Sage) def A165973_list(prec): P. = PowerSeriesRing(ZZ, prec) return P((1+t)*(1-t^10)/(1-25*t+324*t^10-300*t^11)).list() A165973_list(30) # G. C. Greubel, Sep 26 2019 (GAP) a:=[26, 650, 16250, 406250, 10156250, 253906250, 6347656250, 158691406250, 3967285156250, 99182128905925];; for n in [11..30] do a[n]:=24*Sum([1..9], j-> a[n-j]) -300*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 26 2019 CROSSREFS Sequence in context: A164639 A164964 A165369 * A166420 A166613 A167079 Adjacent sequences: A165970 A165971 A165972 * A165974 A165975 A165976 KEYWORD nonn AUTHOR John Cannon and N. J. A. Sloane, Dec 03 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 3 01:46 EST 2023. Contains 360024 sequences. (Running on oeis4.)