The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A165975 a(n) = sqrt( binomial(4n,0) * binomial(4n,1) * ... * binomial(4n,2n-1) ). 2
 1, 2, 112, 261360, 27983155200, 143829595278720000, 36441048083860298170220544, 463109968103790656729135319264000000, 298869615482782118878970689211942578421760000000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..25 FORMULA a(n) = (4n)!^n / A165970(n). a(n) ~ A^(1/2) * exp(2*n^2 + n - 1/48) / (2^(5*n/2 + 1/6) * Pi^(n/2) * n^(n/2 - 1/24)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Apr 19 2016 MATHEMATICA Table[Sqrt[Product[Binomial[4*n, k], {k, 0, 2*n - 1}]], {n, 0, 5}] (* G. C. Greubel, Apr 19 2016 *) PROG (PARI) a(n) = sqrtint(prod(k=0, 2*n-1, binomial(4*n, k))); \\ Michel Marcus, Apr 19 2016 CROSSREFS Cf. A262261. Sequence in context: A024342 A225333 A012525 * A051590 A091302 A209611 Adjacent sequences:  A165972 A165973 A165974 * A165976 A165977 A165978 KEYWORD nonn AUTHOR Max Alekseyev, Oct 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 11:27 EDT 2020. Contains 334592 sequences. (Running on oeis4.)