login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165749
a(n) = (9/5)*(1+4*(-9)^(n-1)).
2
1, 9, -63, 585, -5247, 47241, -425151, 3826377, -34437375, 309936393, -2789427519, 25104847689, -225943629183, 2033492662665, -18301433963967, 164712905675721, -1482416151081471, 13341745359733257
OFFSET
0,2
FORMULA
a(n) = -8*a(n-1) + 9*a(n-2), a(0)=1, a(1)=9.
a(n) = (-9)*a(n-1) + 18 for n>=1, with a(0)=1.
G.f.: (1+17x)/(1+8x-9x^2).
a(n) = Sum_{0<=k<=n} A112555(n,k)*8^(n-k).
E.g.f.: (1/5)*(9*exp(x) - 4*exp(-9*x)). - G. C. Greubel, Apr 07 2016
MATHEMATICA
Table[9/5 (1+4(-9)^(n-1)), {n, 0, 20}] (* or *) LinearRecurrence[{-8, 9}, {1, 9}, 20] (* Harvey P. Dale, Nov 24 2011 *)
PROG
(PARI) x='x+O('x^99); Vec((1+17*x)/(1+8*x-9*x^2)) \\ Altug Alkan, Apr 07 2016
(PARI) a(n) = (9-4*(-9)^n)/5 \\ Charles R Greathouse IV, Apr 07 2016
CROSSREFS
Sequence in context: A336670 A065025 A165510 * A251211 A342197 A302975
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 26 2009
STATUS
approved