login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165751
a(n) = 4 - 3*2^n.
3
1, -2, -8, -20, -44, -92, -188, -380, -764, -1532, -3068, -6140, -12284, -24572, -49148, -98300, -196604, -393212, -786428, -1572860, -3145724, -6291452, -12582908, -25165820, -50331644, -100663292, -201326588, -402653180, -805306364, -1610612732, -3221225468
OFFSET
0,2
FORMULA
a(n) = 2*a(n-1) - 4, a(0)=1.
a(n) = Sum_{0<=k<=n} A112555(n,k)*(-3)^(n-k).
G.f.: (1-5x)/(1-3x+2x^2).
From G. C. Greubel, Apr 07 2016: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
E.g.f.: 4*exp(x) - 3*exp(2*x). (End)
a(n) = -A131128(n) for n>=1. - R. J. Mathar, Feb 27 2019
MATHEMATICA
Table[4 - 3*2^n, {n, 0, 50}] (* or *) LinearRecurrence[{3, -2}, {1, -2}, 50] (* G. C. Greubel, Apr 07 2016 *)
PROG
(PARI) my(x='x+O('x^99)); Vec((1-5*x)/(1-3*x+2*x^2)) \\ Altug Alkan, Apr 07 2016
CROSSREFS
Cf. A131128.
Sequence in context: A009303 A096586 A131128 * A296954 A203604 A240940
KEYWORD
easy,sign
AUTHOR
Philippe Deléham, Sep 26 2009
STATUS
approved