login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165510
a(0)=1, a(1)=9, a(n) = 72*a(n-2) - a(n-1).
2
1, 9, 63, 585, 3951, 38169, 246303, 2501865, 15231951, 164902329, 931798143, 10941169545, 56148296751, 731615910489, 3311061455583, 49365284099625, 189031140702351, 3365269314470649, 10244972816098623, 232054417825788105
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to -9.
First term < 0: a(27) = -60053864762402471338497.
FORMULA
G.f.: (1+10*x)/(1+x-72*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*8^k.
a(n) = (18*8^n-(-9)^n)/17. - Klaus Brockhaus, Sep 26 2009
E.g.f.: (18*exp(8*x) - exp(-9*x))/17. - G. C. Greubel, Oct 21 2018
MATHEMATICA
LinearRecurrence[{-1, 72}, {1, 9}, 30] (* Harvey P. Dale, Oct 15 2012 *)
PROG
(PARI) vector(30, n, n--; (18*8^n-(-9)^n)/17) \\ G. C. Greubel, Oct 21 2018
(Magma) [(18*8^n-(-9)^n)/17: n in [0..30]]; // G. C. Greubel, Oct 21 2018
CROSSREFS
Sequence in context: A206816 A336670 A065025 * A165749 A251211 A342197
KEYWORD
sign
AUTHOR
Philippe Deléham, Sep 21 2009
STATUS
approved