login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A165511
a(0)=1, a(1)=10, a(n) = 90*a(n-2) - a(n-1).
2
1, 10, 80, 820, 6380, 67420, 506780, 5561020, 40049180, 460442620, 3143983580, 38295852220, 244662669980, 3201964029820, 18817676268380, 269359086415420, 1424231777738780, 22818085999649020, 105362773996841180
OFFSET
0,2
COMMENTS
a(n)/a(n-1) tends to -10.
First entry < 0: a(30) = -8009307078719785774426912420.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..998 (terms 0..100 from Franklin T. Adams-Watters)
FORMULA
G.f.: (1+11*x)/(1+x-90*x^2).
a(n) = Sum_{k=0..n} A112555(n,k)*9^k.
a(n) = (20*9^n-(-10)^n)/19. - Klaus Brockhaus, Sep 26 2009
E.g.f.: (20*exp(9*x) - exp(-10*x))/19. - G. C. Greubel, Oct 21 2018
MATHEMATICA
LinearRecurrence[{-1, 90}, {1, 10}, 20] (* or *) CoefficientList[Series[ (1+11x)/(1+x-90x^2), {x, 0, 20}], x] (* Harvey P. Dale, Apr 30 2011 *)
PROG
(PARI) vector(50, n, n--; (20*9^n-(-10)^n)/19) \\ G. C. Greubel, Oct 21 2018
(Magma) [(20*9^n-(-10)^n)/19: n in [0..50]]; // G. C. Greubel, Oct 21 2018
CROSSREFS
Sequence in context: A037692 A126531 A200162 * A165750 A297869 A138425
KEYWORD
sign
AUTHOR
Philippe Deléham, Sep 21 2009
STATUS
approved