login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164650
Numbers n such that sigma(n)/phi(n) = 49/36.
2
679, 10127, 20273, 672203, 971261, 1133639, 1247129, 1336231, 1646743, 1701089, 2369471, 2674969, 2722499, 2989909, 3160079, 3597659, 4545749, 6333503, 7127861, 9357101, 10574629, 20070061, 52928293, 67931137, 74731807, 79940069, 80704813, 93444911, 128155333
OFFSET
1,1
COMMENTS
A subsequence of A011257.
If 7^{k+1}-1 = d*D such that p = 2*7^{k+1}*(d+1)-1 and q = 2*(7^{k+1}+D)-1 are distinct primes, then n = 7^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=7), cf. A068390, A164646, A164648.
LINKS
PROG
(PARI) for( n=1, 1e7, sigma(n)==49/36*eulerphi(n) && print1(n", "))
CROSSREFS
Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164646-A164649.
Sequence in context: A352263 A340091 A374556 * A200828 A097772 A257828
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 22 2009
STATUS
approved