login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163667
Numbers n such that sigma(n) = 9*phi(n).
11
30, 264, 714, 3080, 3828, 6678, 10098, 12648, 21318, 22152, 24882, 44660, 49938, 61344, 86304, 94944, 118296, 129504, 130356, 147560, 183396, 199386, 201756, 207264, 216936, 248710, 258440, 265914, 275196, 290290, 321204, 505164, 628776, 706266, 706836
OFFSET
1,1
COMMENTS
This sequence is a subsequence of A011257 because sqrt(phi(n)*sigma(n)) = 3*phi(n).
If 2^p-1 and 2*3^k-1 are two primes greater than 5 then n = 2^(p-2)*(2^p-1)*3^(k-1)*(2*3^k-1) (the product of two relatively prime terms 2^(p-2)*(2^p-1) and 3^(k-1)*(2*3^k-1) of A011257) is in the sequence. The proof is easy.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson)
Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8.
Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2.
MATHEMATICA
Select[Range[700000], DivisorSigma[1, # ]==9EulerPhi[ # ]&]
PROG
(PARI) is(n)=sigma(n)==9*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013
KEYWORD
easy,nonn
AUTHOR
STATUS
approved