The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163667 Numbers n such that sigma(n) = 9*phi(n). 11
 30, 264, 714, 3080, 3828, 6678, 10098, 12648, 21318, 22152, 24882, 44660, 49938, 61344, 86304, 94944, 118296, 129504, 130356, 147560, 183396, 199386, 201756, 207264, 216936, 248710, 258440, 265914, 275196, 290290, 321204, 505164, 628776, 706266, 706836 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is a subsequence of A011257 because sqrt(phi(n)*sigma(n)) = 3*phi(n). If 2^p-1 and 2*3^k-1 are two primes greater than 5 then n = 2^(p-2)*(2^p-1)*3^(k-1)*(2*3^k-1) (the product of two relatively prime terms 2^(p-2)*(2^p-1) and 3^(k-1)*(2*3^k-1) of A011257) is in the sequence. The proof is easy. LINKS Amiram Eldar, Table of n, a(n) for n = 1..10000 (calculated using data from Jud McCranie, terms 1..1000 from Donovan Johnson) Kevin A. Broughan and Daniel Delbourgo, On the Ratio of the Sum of Divisors and Euler’s Totient Function I, Journal of Integer Sequences, Vol. 16 (2013), Article 13.8.8. Kevin A. Broughan and Qizhi Zhou, On the Ratio of the Sum of Divisors and Euler's Totient Function II, Journal of Integer Sequences, Vol. 17 (2014), Article 14.9.2. MATHEMATICA Select[Range[700000], DivisorSigma[1, # ]==9EulerPhi[ # ]&] PROG (PARI) is(n)=sigma(n)==9*eulerphi(n) \\ Charles R Greathouse IV, May 09 2013 CROSSREFS Cf. A000010, A000043, A000203, A000668, A003307, A011257, A079363. Sequence in context: A230615 A230731 A053358 * A214944 A259455 A270852 Adjacent sequences: A163664 A163665 A163666 * A163668 A163669 A163670 KEYWORD easy,nonn AUTHOR M. F. Hasler and Farideh Firoozbakht, Aug 09 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 17:07 EDT 2024. Contains 371874 sequences. (Running on oeis4.)