login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164646
Numbers n such that sigma(n)/phi(n) = 9/4.
6
51, 477, 595, 3567, 17765, 20735, 41615, 104931, 276651, 470721, 493493, 599169, 834591, 993395, 1092845, 1242505, 1318521, 1479981, 1490645, 1712037, 2344045, 2736305, 2912463, 2986941, 2990709, 3042873, 3187917, 3277611, 3295821, 3767331, 4686039, 5059881
OFFSET
1,1
COMMENTS
A subsequence of A011257.
If 3^{k+1}-1 = d*D such that p = 2*b^{k+1}*(d+1) - 1 and q = 2*(b^{k+1}+D)-1 are distinct primes, then n = 3^k*p*q is a term of this sequence.
The same theorem holds for sequences of numbers such that sigma/phi=b^2/(b-1)^2 with other primes b (here b=3; in A068390: b=2, in A164648: b=5).
LINKS
MATHEMATICA
Select[Range[506*10^4], DivisorSigma[1, #]/EulerPhi[#]==9/4&] (* Harvey P. Dale, Jun 22 2019 *)
PROG
(PARI) for( n=1, 1e7, sigma(n)==9/4*eulerphi(n) && print1(n", "))
CROSSREFS
Cf. A000010 (=phi), A000203 (=sigma), A068390 (sigma/phi=4), A163667 (sigma/phi=9), A164647 (sigma/phi=16/9).
Sequence in context: A222910 A259692 A204215 * A128511 A347922 A355418
KEYWORD
nonn
AUTHOR
M. F. Hasler, Aug 22 2009
STATUS
approved