login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347922
Number of minimal total dominating sets in the n X n rook complement graph.
2
0, 1, 51, 492, 2500, 8925, 25431, 61936, 134352, 266625, 493075, 861036, 1433796, 2293837, 3546375, 5323200, 7786816, 11134881, 15604947, 21479500, 29091300, 38829021, 51143191, 66552432, 85650000, 109110625, 137697651, 172270476, 213792292, 263338125
OFFSET
1,3
COMMENTS
From Andrew Howroyd, Jan 19 2022: (Start)
The vertex sets which are not totally dominating are just those that are contained in the union of a single row and column. Minimal total dominating sets are:
- any three vertices such that no two are in the same row or column,
- two vertices in each of two rows/columns. (End)
LINKS
Eric Weisstein's World of Mathematics, Minimal Total Dominating Set
Eric Weisstein's World of Mathematics, Rook Complement Graph
FORMULA
From Andrew Howroyd, Jan 19 2022: (Start)
a(n) = 6*binomial(n,3)^2 + 2*binomial(n,2)^3 - binomial(n,2)^2.
a(n) = (5*n^2 - 11*n + 5)*n^2*(n-1)^2/12.
G.f.: x*(1 + 44*x + 156*x^2 + 92*x^3 + 7*x^4)/(1 - x)^7.
(End)
MATHEMATICA
Table[(n - 1)^2 n^2 (5 n^2 - 11 n + 5)/12, {n, 20}] (* Eric W. Weisstein, May 11 2024 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 1, 51, 492, 2500, 8925, 25431}, 20] (* Eric W. Weisstein, May 11 2024 *)
CoefficientList[Series[-x (1 + 44 x + 156 x^2 + 92 x^3 + 7 x^4)/(-1 + x)^7, {x, 0, 20}], x] (* Eric W. Weisstein, May 11 2024 *)
PROG
(PARI) a(n) = (5*n^2 - 11*n + 5)*n^2*(n-1)^2/12 \\ Andrew Howroyd, Jan 19 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Sep 19 2021
EXTENSIONS
Terms a(6) and beyond from Andrew Howroyd, Jan 19 2022
STATUS
approved