login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164037
Expansion of (5-9*x)/(1-6*x+7*x^2).
2
5, 21, 91, 399, 1757, 7749, 34195, 150927, 666197, 2940693, 12980779, 57299823, 252933485, 1116502149, 4928478499, 21755355951, 96032786213, 423909225621, 1871225850235, 8259990522063, 36461362180733, 160948239429957
OFFSET
0,1
COMMENTS
Binomial transform of A161941 without initial 2. Third binomial transform of A164095. Inverse binomial transform of A161731 without initial 1.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = 6*a(n-1)-7*a(n-2) for n > 1; a(0) = 5, a(1) = 21.
G.f.: (5-9*x)/(1-6*x+7*x^2).
a(n) = ((5+3*sqrt(2))*(3+sqrt(2))^n+(5-3*sqrt(2))*(3-sqrt(2))^n)/2.
E.g.f.: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 08 2017
MATHEMATICA
CoefficientList[Series[(5-9x)/(1-6x+7x^2), {x, 0, 30}], x] (* or *) LinearRecurrence[{6, -7}, {5, 21}, 30] (* Harvey P. Dale, Apr 27 2017 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+3*r)*(3+r)^n+(5-3*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 10 2009
(PARI) Vec((5-9*x)/(1-6*x+7*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
Cf. A161941, A164095 (5, 6, 10, 12, 20, 24, ...), A161731.
Sequence in context: A188707 A360580 A333538 * A218961 A168444 A125784
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 10 2009
STATUS
approved