login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A333538
Indices of records in A333537.
4
1, 5, 21, 91, 355, 456, 666, 2927, 4946, 6064, 6188, 6192, 13858, 14884, 39592, 54429, 77603, 87566, 210905, 245770, 422097, 585876, 908602, 976209, 1240768, 1340675, 1573890, 2589172, 4740893, 5168099, 8525972, 8646462, 10478354, 12636785, 17943798, 19524935
OFFSET
1,2
COMMENTS
The first few primes that are not record values of A333537 are 2, 11, 53, 59, 71, 73, 89, 97, 103, 107 (see A333541, A333542). - Robert Israel, Apr 12 2020
a(72) > 5*10^9. - David A. Corneth, Apr 14 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..71 (first 36 terms from Robert Israel)
J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, Three Cousins of Recaman's Sequence, arXiv:2004:14000 [math.NT], April 2020.
MAPLE
f:= proc(n) local k, p;
p:= n;
for k from 1 do
p:= p*(n+k);
if (p/(n+k+1))::integer then return n+k+1 fi
od
end proc:
R:= 1: g:= 3: count:= 1:
for n from 2 while count < 20 do
x:= max(numtheory:-factorset(f(n)));
if x > g then count:= count+1; g:= x; R:= R, n; fi
od:
R; # Robert Israel, Apr 12 2020
MATHEMATICA
f[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[ p, n + k + 1], Return[FactorInteger[n + k + 1][[-1, 1]]]]]];
R = {1}; g = 3; count = 1;
For[n = 2, count < 20, n++, x = f[n]; If[x > g, count++; g = x; AppendTo[R, n]]];
R (* Jean-François Alcover, Aug 17 2020, after Robert Israel *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 12 2020
EXTENSIONS
a(13)-a(20) from Robert Israel, Apr 12 2020
More terms from Jinyuan Wang, Apr 12 2020
STATUS
approved