Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Apr 25 2021 13:12:29
%S 1,5,21,91,355,456,666,2927,4946,6064,6188,6192,13858,14884,39592,
%T 54429,77603,87566,210905,245770,422097,585876,908602,976209,1240768,
%U 1340675,1573890,2589172,4740893,5168099,8525972,8646462,10478354,12636785,17943798,19524935
%N Indices of records in A333537.
%C The first few primes that are not record values of A333537 are 2, 11, 53, 59, 71, 73, 89, 97, 103, 107 (see A333541, A333542). - _Robert Israel_, Apr 12 2020
%C a(72) > 5*10^9. - _David A. Corneth_, Apr 14 2020
%H David A. Corneth, <a href="/A333538/b333538.txt">Table of n, a(n) for n = 1..71</a> (first 36 terms from Robert Israel)
%H J. S. Myers, R. Schroeppel, S. R. Shannon, N. J. A. Sloane, and P. Zimmermann, <a href="http://arxiv.org/abs/2004.14000">Three Cousins of Recaman's Sequence</a>, arXiv:2004:14000 [math.NT], April 2020.
%p f:= proc(n) local k, p;
%p p:= n;
%p for k from 1 do
%p p:= p*(n+k);
%p if (p/(n+k+1))::integer then return n+k+1 fi
%p od
%p end proc:
%p R:= 1: g:= 3: count:= 1:
%p for n from 2 while count < 20 do
%p x:= max(numtheory:-factorset(f(n)));
%p if x > g then count:= count+1; g:= x; R:= R, n; fi
%p od:
%p R; # _Robert Israel_, Apr 12 2020
%t f[n_] := Module[{k, p = n}, For[k = 1, True, k++, p *= (n+k); If[Divisible[ p, n + k + 1], Return[FactorInteger[n + k + 1][[-1, 1]]]]]];
%t R = {1}; g = 3; count = 1;
%t For[n = 2, count < 20, n++, x = f[n]; If[x > g, count++; g = x; AppendTo[R, n]]];
%t R (* _Jean-François Alcover_, Aug 17 2020, after _Robert Israel_ *)
%Y Cf. A061836, A332558, A332559, A333537, A333541, A333542.
%K nonn
%O 1,2
%A _N. J. A. Sloane_, Apr 12 2020
%E a(13)-a(20) from _Robert Israel_, Apr 12 2020
%E More terms from _Jinyuan Wang_, Apr 12 2020