login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164038
Expansion of (5-19*x)/(1-10*x+23*x^2).
3
5, 31, 195, 1237, 7885, 50399, 322635, 2067173, 13251125, 84966271, 544886835, 3494644117, 22414043965, 143763624959, 922113238395, 5914569009893, 37937085615845, 243335768930911, 1560804720144675, 10011324516035797
OFFSET
0,1
COMMENTS
Binomial transform of A161731 without initial 1. Fifth binomial transform of A164095. Inverse binomial transform of A164110.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..100 from Vincenzo Librandi)
FORMULA
a(n) = 10*a(n-1) - 23*a(n-2) for n > 1; a(0) = 5, a(1) = 31.
G.f.: (5-19*x)/(1-10*x+23*x^2).
a(n) = ((5+3*sqrt(2))*(5+sqrt(2))^n + (5-3*sqrt(2))*(5-sqrt(2))^n)/2.
E.g.f: (5*cosh(sqrt(2)*x) + 3*sqrt(2)*sinh(sqrt(2)*x))*exp(5*x). - G. C. Greubel, Sep 08 2017
MATHEMATICA
LinearRecurrence[{10, -23}, {5, 31}, 50] (* or *) CoefficientList[Series[(5 - 19*x)/(1 - 10*x + 23*x^2), {x, 0, 50}], x] (* G. C. Greubel, Sep 08 2017 *)
PROG
(Magma) Z<x>:= PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((5+3*r)*(5+r)^n+(5-3*r)*(5-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 10 2009
(PARI) Vec((5-19*x)/(1-10*x+23*x^2)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 08 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 10 2009
STATUS
approved