login
A163959
Number of reduced words of length n in Coxeter group on 14 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1
1, 14, 182, 2366, 30758, 399854, 5198011, 67572960, 878433192, 11419432752, 148450042104, 1929816959616, 25087183842630, 326127713832648, 4239586491528024, 55113665158705608, 716465177275138200
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170733, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(78*t^6 - 12*t^5 - 12*t^4 - 12*t^3 - 12*t^2 - 12*t + 1).
a(n) = -78*a(n-6) + 12*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-13*t+90*t^6-78*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 11 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^6)/(1-13*t+90*t^6-78*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
coxG[{6, 78, -12}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 11 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-13*t+90*t^6-78*t^7)) \\ G. C. Greubel, Aug 13 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-13*t+90*t^6-78*t^7) )); // G. C. Greubel, Aug 11 2019
(Sage)
def A163959_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-13*t+90*t^6-78*t^7)).list()
A163959_list(30) # G. C. Greubel, Aug 11 2019
(GAP) a:=[14, 182, 2366, 30758, 399854, 5198011];; for n in [7..30] do a[n]:=12*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -78*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 11 2019
CROSSREFS
Sequence in context: A342883 A163090 A163439 * A164618 A164835 A165270
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved