login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163957
Number of reduced words of length n in Coxeter group on 12 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
1
1, 12, 132, 1452, 15972, 175692, 1932546, 21257280, 233822160, 2571956640, 28290564720, 311185670400, 3422926421970, 37650915208500, 414146038003500, 4555452101075700, 50108275682741100, 551172361422635700
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A003954, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(55*t^6 - 10*t^5 - 10*t^4 - 10*t^3 - 10*t^2 - 10*t + 1).
a(n) = -55*a(n-6) + 10*Sum_{k=1..5} a(n-k). - Wesley Ivan Hurt, May 11 2021
MAPLE
seq(coeff(series((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), t, n+1), t, n), n = 0 .. 30); # G. C. Greubel, Aug 10 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7), {t, 0, 30}], t] (* G. C. Greubel, Aug 13 2017 *)
coxG[{6, 55, -10}] (* The coxG program is at A169452 *) (* G. C. Greubel, Aug 10 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)) \\ G. C. Greubel, Aug 13 2017
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7) )); // G. C. Greubel, Aug 10 2019
(Sage)
def A163957_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^6)/(1-11*t+65*t^6-55*t^7)).list()
A163957_list(30) # G. C. Greubel, Aug 10 2019
(GAP) a:=[12, 132, 1452, 15972, 175692, 1932546];; for n in [7..30] do a[n]:=10*(a[n-1] +a[n-2]+a[n-3]+a[n-4]+a[n-5]) -55*a[n-6]; od; Concatenation([1], a); # G. C. Greubel, Aug 10 2019
CROSSREFS
Sequence in context: A010577 A163055 A163432 * A063813 A164601 A164781
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved