OFFSET
1,3
COMMENTS
See A163927 for information about the alpha(k,n) constants.
Apart from a difference of offset, alpha(2,n) appears to be the multiple harmonic (star) sum Sum_{j = 1..n} 1/j^2 Sum_{k = 1..j} 1/k^2, which has the initial values [1, 21/16, 1897/1296, 32197/20736, 20881861/12960000, 7139587/4320000, ...]. - Peter Bala, Jan 31 2019
FORMULA
EXAMPLE
alpha(k=2,n=1) = 0, alpha(k=2,2) = 1, alpha(k=2,3) = 21/16, alpha(k=2,4) = 1897/1296.
MAPLE
nmax:=17; rowk:=2; kmax:=nmax: k:=0: for n from 1 to nmax do alpha(k, n):=1 od: for k from 1 to kmax do for n from 1 to nmax do alpha(k, n) := (1/k)*sum(sum(p^(-2*(k-i)), p=0..n-1)*alpha(i, n), i=0..k-1) od; od: seq(alpha(rowk, n), n=1..nmax);
CROSSREFS
KEYWORD
nonn,frac,easy
AUTHOR
Johannes W. Meijer & Nico Baken, Aug 13 2009, Aug 17 2009
STATUS
approved