login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A163840
Triangle interpolating the binomial transform of the swinging factorial (A163865) with the swinging factorial (A056040).
4
1, 2, 1, 5, 3, 2, 16, 11, 8, 6, 47, 31, 20, 12, 6, 146, 99, 68, 48, 36, 30, 447, 301, 202, 134, 86, 50, 20, 1380, 933, 632, 430, 296, 210, 160, 140, 4251, 2871, 1938, 1306, 876, 580, 370, 210, 70, 13102, 8851, 5980, 4042, 2736, 1860, 1280, 910, 700, 630
OFFSET
0,2
COMMENTS
Triangle read by rows.
An analog to the binomial triangle of the factorials (A076571).
FORMULA
T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.
EXAMPLE
Triangle begins
1;
2, 1;
5, 3, 2;
16, 11, 8, 6;
47, 31, 20, 12, 6;
146, 99, 68, 48, 36, 30;
447, 301, 202, 134, 86, 50, 20;
MAPLE
SumTria := proc(f, n, display) local m, A, j, i, T; T:=f(0);
for m from 0 by 1 to n-1 do A[m] := f(m);
for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
for i from 0 to m do T := T, A[i] od;
if display then print(seq(T[i], i=nops([T])-m..nops([T]))) fi;
od; subsop(1=NULL, [T]) end:
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
# Computes n rows of the triangle:
A163840 := n -> SumTria(swing, n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
Row sums are A163843.
Sequence in context: A067323 A106534 A123346 * A122833 A193692 A344028
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved