OFFSET
0,2
COMMENTS
Triangle read by rows.
An analog to the binomial triangle of the factorials (A076571).
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Peter Luschny, Die schwingende Fakultät und Orbitalsysteme, August 2011.
Peter Luschny, Swinging Factorial.
FORMULA
T(n,k) = Sum_{i=k..n} binomial(n-k,n-i)*i$ where i$ denotes the swinging factorial of i (A056040), for n >= 0, k >= 0.
EXAMPLE
Triangle begins
1;
2, 1;
5, 3, 2;
16, 11, 8, 6;
47, 31, 20, 12, 6;
146, 99, 68, 48, 36, 30;
447, 301, 202, 134, 86, 50, 20;
MAPLE
SumTria := proc(f, n, display) local m, A, j, i, T; T:=f(0);
for m from 0 by 1 to n-1 do A[m] := f(m);
for j from m by -1 to 1 do A[j-1] := A[j-1] + A[j] od;
for i from 0 to m do T := T, A[i] od;
if display then print(seq(T[i], i=nops([T])-m..nops([T]))) fi;
od; subsop(1=NULL, [T]) end:
swing := proc(n) option remember; if n = 0 then 1 elif
irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
# Computes n rows of the triangle:
A163840 := n -> SumTria(swing, n, true);
MATHEMATICA
sf[n_] := n!/Quotient[n, 2]!^2; t[n_, k_] := Sum[Binomial[n - k, n - i]*sf[i], {i, k, n}]; Table[t[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 28 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Aug 06 2009
STATUS
approved