OFFSET
0,3
LINKS
Alois P. Heinz, Rows n = 0..9, flattened
EXAMPLE
Dyck paths of semilength n=3 listed in lexicographic order:
. /\
. /\ /\ /\/\ / \
. /\/\/\ /\/ \ / \/\ / \ / \
. 101010 101100 110010 110100 111000
. k = (1) (2) (3) (4) (5)
.
We have (1),(2),(3),(4),(5) >= (1); (2),(4),(5) >= (2); (3),(4),(5) >= (3);
(4),(5) >= (4); and (5) >= (5), thus row 3 = [5, 3, 3, 2, 1].
Triangle begins:
1;
1;
2, 1;
5, 3, 3, 2, 1;
14, 9, 10, 7, 4, 9, 6, 7, 5, 3, 4, 3, 2, 1;
42, 28, 32, 23, 14, 32, 22, 26, 19, 12, 17, 13, 9, 5, 28, 19, 22, 16, ...
MAPLE
d:= proc(n, l) local m; m:= nops(l);
`if`(n=m, [l], [seq(d(n, [l[], j])[],
j=`if`(m=0, 1, max(m+1, l[-1]))..n)])
end:
le:= proc(x, y) local i;
for i to nops(x) do if x[i]>y[i] then return false fi od; true
end:
T:= proc(n) option remember; local l;
l:= d(n, []);
seq(add(`if`(le(l[j], l[i]), 1, 0), i=j..nops(l)), j=1..nops(l))
end:
seq(T(n), n=0..6);
MATHEMATICA
d[n_, l_] := d[n, l] = Module[{m}, m = Length[l]; If[n == m, {l}, Flatten[#, 1]& @ Table[d[n, Append[l, j]], {j, If[m == 0, 1, Max[m + 1, Last[l]]], n}]]]; le[x_, y_] := Module[{i}, For[i = 1, i <= Length[x], i++, If[x[[i]] > y[[i]] , Return[False]]]; True]; T[n_] := T[n] = Module[{l}, l = d[n, {}]; Table[Sum[If[le[l[[j]], l[[i]]], 1, 0], {i, j, Length[l]}], {j, 1, Length[l]}]]; Table[T[n], {n, 0, 6}] // Flatten (* Jean-François Alcover, Feb 01 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Aug 02 2011
STATUS
approved