login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163839
a(n) = (2^n-1)*4^(2*n-1).
2
0, 4, 192, 7168, 245760, 8126464, 264241152, 8522825728, 273804165120, 8778913153024, 281200098803712, 9002801208229888, 288160007407534080, 9222246136947933184, 295129890780843343872, 9444444735363138715648, 302226843217638866288640, 9671332769940738559442944
OFFSET
0,2
FORMULA
a(n) = 48*a(n-1) - 512*a(n-2) for n > 1; a(0) = 0, a(1) = 4.
G.f.: 4*x/((1-16*x)*(1-32*x)).
E.g.f.: (exp(32*x) - exp(16*x))/4. G. C. Greubel, Aug 05 2017
EXAMPLE
a(2) = (2^2-1)*4^(2*2-1) = 3*4^3 = 192.
MATHEMATICA
Table[(2^n-1)4^(2n-1), {n, 0, 30}] (* or *) LinearRecurrence[{48, -512}, {0, 4}, 30] (* Harvey P. Dale, Jan 22 2016 *)
PROG
(Magma) [ (2^n-1)*4^(2*n-1): n in [0..15] ];
(PARI) x='x+O('x^50); concat([0], Vec(4*x/((1-16*x)*(1-32*x)))) \\ G. C. Greubel, Aug 05 2017
(Python)
def A163839(n): return (1<<n)-1<<(n<<2)-2 if n else 0 # Chai Wah Wu, Mar 14 2024
CROSSREFS
Cf. A000079 (powers of 2), A000302 (powers of 4).
Sequence in context: A355613 A172809 A123116 * A012015 A012102 A274304
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Aug 05 2009
STATUS
approved