login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123116
Values y of solutions (x, y) to the Diophantine equation (x-y)^4 - 8*x*y = 0 with x >= y.
2
0, 4, 192, 6860, 235008, 7994836, 271656000, 9228697244, 313506312192, 10649999100580, 361786539945408, 12290092806887276, 417501371504448000, 14182756553557856884, 481796221538133532992, 16366888776259793834300, 555992422174307055403008
OFFSET
0,2
COMMENTS
Corresponding x-values (A123057) are x(n) = c(n)*(1 + d(n)) with c(n) and d(n) defined in formula section.
The pair (x,y) = (A001542(n), a(n)) satisfies the equation 2*x^4 - 2*x*y - y^2 = 0. - Alexander Samokrutov, Sep 04 2015
FORMULA
a(n) = c(n)*(d(n) - 1) with c(0)=0, c(1)=2 and c(n) = 6*c(n-1) - c(n-2) d(0)=1, d(1)=3 and d(n) = 6*d(n-1) - d(n-2).
For n>=4, a(n) = 40*a(n-1) - 206*a(n-2) + 40*a(n-3) - a(n-4). - Max Alekseyev, Nov 13 2009
G.f.: 4*x*(1 +8*x +x^2)/((1 -34*x +x^2)*(1 -6*x +x^2)). - Colin Barker, Oct 25 2012
a(n) = A123057(n) - 2*A001542(n). - Alexander Samokrutov, Sep 05 2015
a(n) = (1/2)*(A000129(4*n) - 2*A000129(2*n)) = (1/2)*A000129(2*n)*(A002203(2*n) - 2) = 2*A123115(n). - G. C. Greubel, Jul 21 2021
MATHEMATICA
LinearRecurrence[{40, -206, 40, -1}, {0, 4, 192, 6860}, 40] (* Vincenzo Librandi, Sep 22 2015 *)
Table[(Fibonacci[4*n, 2] - 2*Fibonacci[2*n, 2])/2, {n, 0, 30}] (* G. C. Greubel, Jul 21 2021 *)
PROG
(PARI) concat(0, Vec(4*x*(1+8*x+x^2)/((1-34*x+x^2)*(1-6*x+x^2)) + O(x^20))) \\ Michel Marcus, Sep 05 2015
(Magma) I:=[0, 4, 192, 6860]; [n le 4 select I[n] else 40*Self(n-1) -206*Self(n-2) +40*Self(n-3) -Self(n-4): n in [1..20]]; // Vincenzo Librandi, Sep 22 2015
(Sage) [(1/2)*(lucas_number1(4*n, 2, -1) - 2*lucas_number1(2*n, 2, -1)) for n in (0..30)] # G. C. Greubel, Jul 21 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mohamed Bouhamida, Sep 28 2006
EXTENSIONS
More terms from Max Alekseyev, Nov 13 2009
Edited by Michel Marcus, Sep 05 2015
STATUS
approved