login
A163386
Primes p such that 4(p-4)-1 and 4(p-4)+1 are twin primes.
4
5, 7, 19, 31, 61, 109, 211, 277, 367, 409, 421, 487, 571, 829, 967, 1009, 1069, 1201, 1237, 1279, 1471, 1579, 1669, 1699, 1741, 1831, 2161, 2521, 2539, 2719, 2797, 3067, 4021, 4051, 4177, 4261, 4327, 4441, 4519, 4567, 4639, 4789, 4861, 5197, 5407, 5527
OFFSET
1,1
COMMENTS
In other words, primes p such that 4*(p-4) is member of A014574. [Omar E. Pol, Aug 05 2009]
LINKS
EXAMPLE
4*(5-4)=4, 4*(7-4)=12, 4*(19-4)=60,...
MATHEMATICA
f1[n_]:=If[PrimeQ[n-1]&&PrimeQ[n+1], True, False]; f2[n_]:=If[f1[n]&&PrimeQ[n/4+4], True, False]; lst={}; Do[If[f2[n], AppendTo[lst, n/4+4]], {n, 8!}]; lst
Select[Prime[Range[3, 750]], And@@PrimeQ[4(#-4)+{1, -1}]&] (* Harvey P. Dale, Jan 24 2014 *)
CROSSREFS
Cf. A163385.
Cf. A014574, A163387, A163378. [Omar E. Pol, Aug 05 2009]
Sequence in context: A023246 A022889 A001562 * A200178 A064101 A018581
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by Omar E. Pol, Aug 06 2009
STATUS
approved