login
A163385
Primes p such that 3(p-3)-1 and 3(p-3)+1 are twin primes.
4
5, 7, 13, 17, 23, 37, 53, 67, 79, 83, 97, 107, 157, 193, 223, 277, 347, 353, 367, 433, 443, 479, 487, 499, 569, 577, 599, 647, 653, 773, 797, 853, 907, 937, 1087, 1103, 1123, 1259, 1277, 1367, 1409, 1423, 1427, 1549, 1553, 1747, 1889, 2069, 2153, 2237, 2267
OFFSET
1,1
COMMENTS
In other words, primes p such that 3*(p-3) is a term of A014574. - Omar E. Pol, Aug 05 2009
LINKS
EXAMPLE
3*(5-3) = 6, 3*(7-3) = 12, 3*(13-3) = 30, ...
MAPLE
select(p -> isprime(p) and isprime(3*p-10) and isprime(3*p-8), [seq(i, i=3..10000, 2)]); # Robert Israel, Nov 13 2016
MATHEMATICA
f1[n_]:=If[PrimeQ[n-1]&&PrimeQ[n+1], True, False]; f2[n_]:=If[f1[n]&&PrimeQ[n/3+3], True, False]; lst={}; Do[If[f2[n], AppendTo[lst, n/3+3]], {n, 8!}]; lst
Select[Prime[Range[400]], AllTrue[3(#-3)+{1, -1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Jan 16 2017 *)
CROSSREFS
Cf. A163386, A163387, A163388. - Omar E. Pol, Aug 05 2009
Sequence in context: A095283 A317543 A253297 * A368277 A358313 A288449
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition clarified and edited by Omar E. Pol, Aug 05 2009
STATUS
approved