login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163387
Primes p such that 5(p-5)-1 and 5(p-5)+1 are twin primes.
4
11, 17, 41, 53, 59, 89, 137, 167, 251, 263, 269, 431, 467, 563, 599, 677, 683, 809, 857, 1061, 1109, 1181, 1223, 1259, 1277, 1319, 1361, 1523, 1607, 1889, 1931, 1949, 2111, 2237, 2393, 2399, 2741, 3251, 3371, 3617, 3821, 3833, 3881, 4133, 4217, 4373, 4679
OFFSET
1,1
COMMENTS
In other words, primes p such that 5*(p-5) is member of A014574. [From Omar E. Pol, Aug 05 2009]
LINKS
EXAMPLE
5*(11-5)=30, 5*(17-5)=60,...
MATHEMATICA
f1[n_]:=If[PrimeQ[n-1]&&PrimeQ[n+1], True, False]; f2[n_]:=If[f1[n]&&PrimeQ[n/5+5], True, False]; lst={}; Do[If[f2[n], AppendTo[lst, n/5+5]], {n, 8!}]; lst
Select[Prime[Range[700]], AllTrue[5(#-5)+{1, -1}, PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 18 2015 *)
CROSSREFS
Cf. A014574, A163388 [From Omar E. Pol, Aug 05 2009]
Sequence in context: A291374 A181421 A290530 * A147253 A201476 A057473
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Definition clarified by Omar E. Pol, Aug 05 2009
STATUS
approved