The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064101 Primes p = p(k) such that p(k) + p(k+5) = p(k+1) + p(k+4) = p(k+2) + p(k+3). 1
 5, 7, 19, 31, 97, 131, 151, 293, 587, 683, 811, 839, 857, 907, 1013, 1097, 1279, 2347, 2677, 2833, 3011, 3329, 4217, 4219, 5441, 5839, 5849, 6113, 8233, 8273, 8963, 9433, 10301, 10427, 10859, 11953, 13513, 13597, 13721, 13931, 14713, 15629, 16057 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Harry J. Smith, Table of n, a(n) for n = 1..1000 EXAMPLE The first ten primes are 2, 3, 5, 7, 11, 13, 17, 19, 23 and 29. Take just the fourth through the ninth and rearrange them such that the first pairs with the sixth, the second with the fifth and the third with the fourth as follows: 7 and 23, 11 and 19 and 13 and 17. All three pairs sum to 30. Therefore a(2) = 7. MAPLE A := {}: for n to 1000 do p1 := ithprime(n); p2 := ithprime(n+1); p3 := ithprime(n+2); p4 := ithprime(n+3); p5 := ithprime(n+4); p6 := ithprime(n+5); if `and`(p1+p6 = p2+p5, p2+p5 = p3+p4) then A := `union`(A, {p1}) end if end do; A := A; MATHEMATICA a = {0, 0, 0, 0, 0, 0}; Do[ a = Delete[ a, 1 ]; a = Append[ a, Prime[ n ] ]; If[ a[ [ 1 ] ] + a[ [ 6 ] ] == a[ [ 2 ] ] + a[ [ 5 ] ] == a[ [ 3 ] ] + a[ [ 4 ] ], Print[ a[ [ 1 ] ] ] ], {n, 1, 20000} ] (* RGWv *) Prime[Select[Range[100], Prime[#] + Prime[# + 5] == Prime[# + 1] + Prime[# + 4] && Prime[#] + Prime[# + 5] == Prime[# + 2] + Prime[# + 3] &]] PROG (PARI) { n=0; default(primelimit, 1500000); for (k=1, 10^9, p1=prime(k) + prime(k + 5); p2=prime(k + 1) + prime(k + 4); p3=prime(k + 2) + prime(k + 3); if (p1==p2 && p2==p3, write("b064101.txt", n++, " ", prime(k)); if (n==1000, break)) ) } \\ Harry J. Smith, Sep 07 2009 CROSSREFS Cf. A022885. Sequence in context: A001562 A163386 A200178 * A018581 A146470 A296935 Adjacent sequences:  A064098 A064099 A064100 * A064102 A064103 A064104 KEYWORD easy,nonn AUTHOR Robert G. Wilson v, Sep 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 3 01:51 EDT 2021. Contains 346429 sequences. (Running on oeis4.)