login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A163325
Pick digits at the even distance from the least significant end of the ternary expansion of n, then convert back to decimal.
8
0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 8, 6, 7, 8, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 8, 6, 7, 8, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 7, 8, 6, 7, 8, 6, 7, 8, 9, 10, 11, 9, 10, 11, 9, 10, 11, 12, 13, 14, 12, 13, 14
OFFSET
0,3
FORMULA
a(0) = 0, a(n) = (n mod 3) + 3*a(floor(n/9)).
a(n) = Sum_{k>=0} {A030341(n,k)*b(k)} where b is the sequence (1,0,3,0,9,0,27,0,81,0,243,0... = A254006): powers of 3 alternating with zeros. - Philippe Deléham, Oct 22 2011
A037314(a(n)) + 3*A037314(A163326(n)) = n for all n.
EXAMPLE
11 in ternary base (A007089) is written as '102' (1*9 + 0*3 + 2), from which we pick the "zeroth" and 2nd digits from the right, giving '12' = 1*3 + 2 = 5, thus a(11) = 5.
PROG
(PARI) a(n) = fromdigits(digits(n, 9)%3, 3); \\ Kevin Ryde, May 14 2020
CROSSREFS
A059905 is an analogous sequence for binary.
Sequence in context: A055087 A025685 A194515 * A105186 A328346 A238406
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Jul 29 2009
EXTENSIONS
Edited by Charles R Greathouse IV, Nov 01 2009
STATUS
approved