login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A037314 Numbers n such that (sum of base 3 digits of n)=(sum of base 9 digits of n). 11
0, 1, 2, 9, 10, 11, 18, 19, 20, 81, 82, 83, 90, 91, 92, 99, 100, 101, 162, 163, 164, 171, 172, 173, 180, 181, 182, 729, 730, 731, 738, 739, 740, 747, 748, 749, 810, 811, 812, 819, 820, 821, 828, 829, 830, 891, 892, 893, 900, 901, 902, 909, 910, 911 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = Sum{d(i)*9^i: i=0,1,...,m}, where Sum{d(i)*3^i: i=0,1,...,m} is the base 3 representation of n.

Numbers that can be written using only digits 0, 1 and 2 in base 9. Also, write n in base 3, read as base 9: (3) [n] (9) in base change notation. a(3n+k) = 9a(n)+k for k in {0,1,2}. - Franklin T. Adams-Watters, Jul 24 2006

LINKS

Table of n, a(n) for n=0..53.

FORMULA

G.f. f(x) = sum(j>=0, 9^j*x^(3^j)*(1+x^(3^j)-2*x^(2*3^j))/((1-x)*(1-x^(3^(j+1))))) satisfies f(x) = 9*(x^2+x+1)*f(x^3) + x*(1+2*x)/(1-x^3). - Robert Israel, Apr 13 2015

MATHEMATICA

Table[FromDigits[RealDigits[n, 3], 9], {n, 1, 100}]

(* Clark Kimberling, Aug 14 2012 *)

PROG

(PARI) a(n) = {my(d = digits(n, 3)); subst(Pol(d), x, 9); } \\ Michel Marcus, Apr 09 2015

CROSSREFS

Cf. A007089.

Sequence in context: A135782 A281899 A037457 * A226841 A218560 A031443

Adjacent sequences:  A037311 A037312 A037313 * A037315 A037316 A037317

KEYWORD

nonn,base

AUTHOR

Clark Kimberling

EXTENSIONS

Edited by N. J. A. Sloane at the suggestion of Andrew Plewe, Jun 08 2007

Offset changed to 0 by Clark Kimberling, Aug 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 06:42 EDT 2017. Contains 286909 sequences.