login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226841
Minimum k such that (F(n) - 1) | sum_{i=n..n+k} F(i), where F(i) are Fibonacci numbers (A000045).
2
1, 1, 2, 9, 10, 11, 22, 16, 38, 17, 58, 81, 82, 55, 110, 64, 142, 69, 178, 217, 218, 131, 262, 144, 310, 153, 362, 417, 418, 239, 478, 256, 542, 269, 610, 681, 682, 379, 758, 400, 838, 417, 922, 1009, 1010, 551, 1102, 576, 1198, 597, 1298, 1401, 1402, 755, 1510
OFFSET
1,3
COMMENTS
a(8*n) = 16*n^2, for n>0.
a(8*n + 2) = a(8*n + 1)/2-2, for n>=1.
a(8*n + 3) = 32*n^2 + 24*n + 2, for n>=0.
a(8*n + 5) = a(8*n + 4) + 1, for n>=0.
a(8*n + 7) = 2*a(8*n + 6), for n>=0.
Values of Sum_{i=n..n+k}{F(i)} / A000071(n) are listed in A226842.
LINKS
EXAMPLE
The sum of first 10 Fibonacci numbers is 1 + 1 + 2 + 3 + 5 + 8 + 13 + 21 + 34 + 55 = 143. We need to add at least 17 consecutive Fibonacci numbers, starting from F(11)=89, in order to have 89 + 144 + 233 + 377 + 610 + 987 + 1597 + 2584 + 4181 + 6765 + 10946 + 17711 + 28657 + 46368 + 75025 + 121393 + 196418 = 514085 and 514085 / 143 = 3595.
MAPLE
with(numtheory); with(combinat); ListA226841:= proc(q)
local n, a, b, k, p; a:=0;
for n from 1 to q do a:=a+fibonacci(n); b:=fibonacci(n+1); k:=1;
while not type(b/a, integer) do k:=k+1; b:=b+fibonacci(n+k); od; print(k); od; end: ListA226841(10^4);
CROSSREFS
Sequence in context: A281899 A037457 A037314 * A218560 A373261 A031443
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jun 19 2013
STATUS
approved