login
A328346
Triangle read by rows: T(n,k) is the coefficient of x^(n - k*(k+1)) in Product_{j=1..k} 1/(1 - x^j) for n >= 0, 0 <= k <= A259361(n).
2
1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 3, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 5, 2, 0, 1, 5, 3, 0, 1, 6, 4, 0, 1, 6, 5, 0, 1, 7, 7, 0, 1, 7, 8, 0, 1, 8, 10, 1, 0, 1, 8, 12, 1, 0, 1, 9, 14, 2, 0, 1, 9, 16, 3, 0, 1, 10, 19, 5, 0, 1, 10, 21, 6
OFFSET
0,19
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities
EXAMPLE
Triangle begins:
1;
0;
0, 1;
0, 1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 2;
0, 1, 3;
0, 1, 3;
0, 1, 4, 1;
0, 1, 4, 1;
0, 1, 5, 2;
0, 1, 5, 3;
0, 1, 6, 4;
0, 1, 6, 5;
0, 1, 7, 7;
0, 1, 7, 8;
0, 1, 8, 10, 1;
PROG
(PARI) T(n, k) = polcoef(1/prod(j=1, k, 1-x^j+x*O(x^n)), n-k*(k+1));
tabf(nn) = for(n=0, nn, for(k=0, (-1+sqrt(1+4*n))/2, print1(T(n, k), ", ")); print)
CROSSREFS
Row sums give A003106.
Sequence in context: A194515 A163325 A105186 * A238406 A058709 A025842
KEYWORD
nonn,tabf,look
AUTHOR
Seiichi Manyama, Oct 13 2019
STATUS
approved