login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328346
Triangle read by rows: T(n,k) is the coefficient of x^(n - k*(k+1)) in Product_{j=1..k} 1/(1 - x^j) for n >= 0, 0 <= k <= A259361(n).
2
1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 2, 0, 1, 2, 0, 1, 3, 0, 1, 3, 0, 1, 4, 1, 0, 1, 4, 1, 0, 1, 5, 2, 0, 1, 5, 3, 0, 1, 6, 4, 0, 1, 6, 5, 0, 1, 7, 7, 0, 1, 7, 8, 0, 1, 8, 10, 1, 0, 1, 8, 12, 1, 0, 1, 9, 14, 2, 0, 1, 9, 16, 3, 0, 1, 10, 19, 5, 0, 1, 10, 21, 6
OFFSET
0,19
LINKS
Eric Weisstein's World of Mathematics, Rogers-Ramanujan Identities
EXAMPLE
Triangle begins:
1;
0;
0, 1;
0, 1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 1;
0, 1, 2;
0, 1, 2;
0, 1, 3;
0, 1, 3;
0, 1, 4, 1;
0, 1, 4, 1;
0, 1, 5, 2;
0, 1, 5, 3;
0, 1, 6, 4;
0, 1, 6, 5;
0, 1, 7, 7;
0, 1, 7, 8;
0, 1, 8, 10, 1;
PROG
(PARI) T(n, k) = polcoef(1/prod(j=1, k, 1-x^j+x*O(x^n)), n-k*(k+1));
tabf(nn) = for(n=0, nn, for(k=0, (-1+sqrt(1+4*n))/2, print1(T(n, k), ", ")); print)
CROSSREFS
Row sums give A003106.
Sequence in context: A194515 A163325 A105186 * A238406 A058709 A025842
KEYWORD
nonn,tabf,look
AUTHOR
Seiichi Manyama, Oct 13 2019
STATUS
approved