login
A194515
Second coordinate of (3,4)-Lagrange pair for n.
3
1, -1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 6, 7, 8, 9, 7, 8, 9, 7, 8, 9, 10, 8, 9, 10, 8, 9, 10, 11, 9, 10, 11, 9, 10, 11, 12, 10, 11, 12, 10, 11, 12, 13, 11, 12, 13, 11, 12, 13, 14
OFFSET
1,5
COMMENTS
See A194508.
FORMULA
From Chai Wah Wu, Jan 21 2020: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.
G.f.: x*(x^6 - 2*x^5 + x^4 + x^3 + x^2 - 2*x + 1)/(x^8 - x^7 - x + 1). (End)
a(n) = n - 3*floor((2*n + 3)/7). - Ridouane Oudra, Dec 29 2020
EXAMPLE
This table shows (x(n),y(n)) for 1<=n<=13:
n...... 1..2..3..4..5..6..7..8..9..10..11..12..13
x(n)...-1..2..1..0.-1..2..1..0..3..2...1...0...3
y(n)... 1.-1..0..1..2..0..1..2..0..1...2...3...1
MATHEMATICA
c = 3; d = 4;
x1 = {-1, 2, 1, 0, -1, 2, 1}; y1 = {1, -1, 0, 1, 2, 0, 1};
x[n_] := If[n <= c + d, x1[[n]], x[n - c - d] + 1]
y[n_] := If[n <= c + d, y1[[n]], y[n - c - d] + 1]
Table[x[n], {n, 1, 100}] (* A194514 *)
Table[y[n], {n, 1, 100}] (* A194515 *)
r[1, n_] := n; r[2, n_] := x[n]; r[3, n_] := y[n]
TableForm[Table[r[m, n], {m, 1, 3}, {n, 1, 30}]]
CROSSREFS
Sequence in context: A022333 A055087 A025685 * A163325 A105186 A328346
KEYWORD
sign
AUTHOR
Clark Kimberling, Aug 28 2011
STATUS
approved