login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328345
Number of n-step walks on cubic lattice starting at (0,0,0), ending at (floor(n/3), floor((n+1)/3), floor((n+2)/3)) and using steps (0,0,1), (0,1,0), (1,0,0), (-1,1,1), (1,-1,1), and (1,1,-1).
3
1, 1, 4, 21, 88, 440, 2385, 11781, 62832, 352128, 1842240, 10132320, 57775905, 311810785, 1746140396, 10060071021, 55367204256, 313747490784, 1820016119376, 10152658848528, 58015193420160, 338183208699840, 1905152077559808, 10954624445968896, 64089909936535329
OFFSET
0,3
COMMENTS
These walks are not restricted to the first (nonnegative) octant.
LINKS
Wikipedia, Lattice path
EXAMPLE
a(2) = 4: [(0,0,0),(1,0,0),(0,1,1)], [(0,0,0),(0,1,0),(0,1,1)], [(0,0,0),(0,0,1),(0,1,1)], [(0,0,0),(-1,1,1),(0,1,1)].
MAPLE
b:= proc(l) option remember; `if`(l[-1]=0, 1, (r-> add(add(
add(`if`(i+j+k=1, (h-> `if`(add(t, t=h)<0, 0, b(h)))(
sort(l-[i, j, k])), 0), k=r), j=r), i=r))([$-1..1]))
end:
a:= n-> b([floor((n+i)/3)$i=0..2]):
seq(a(n), n=0..24);
MATHEMATICA
b[l_] := b[l] = If[Last[l] == 0, 1, Sum[If[i + j + k == 1, Function[h, If[Total[h] < 0, 0, b[h]]][Sort[l - {i, j, k}]], 0], {i, {-1, 0, 1}}, {j, {-1, 0, 1}}, {k, {-1, 0, 1}}]];
a[n_] := b[Table[Floor[(n + i)/3], {i, 0, 2}]];
a /@ Range[0, 24] (* Jean-François Alcover, May 12 2020, after Maple *)
CROSSREFS
KEYWORD
nonn,walk
AUTHOR
Alois P. Heinz, Oct 13 2019
STATUS
approved