OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..595
Index entries for linear recurrences with constant coefficients, signature (46,46,46,-1081).
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
a(n) = 46*a(n-1)+46*a(n-2)+46*a(n-3)-1081*a(n-4). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3-46*t^2 - 46*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[ {46, 46, 46, -1081}, {48, 2256, 106032, 4982376}, 20] (* G. C. Greubel, Dec 12 2016 *)
coxG[{4, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3 - 46*t^2-46*t+1)) \\ G. C. Greubel, Dec 12 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5) )); // G. C. Greubel, May 01 2019
(Sage) ((1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
(GAP) a:=[48, 2256, 106032, 4982376];; for n in [5..20] do a[n]:=46*(a[n-1] +a[n-2] +a[n-3]) -1081*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved