login
A163266
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1
1, 48, 2256, 106032, 4982376, 234118656, 11001086208, 516933992448, 24290397127896, 1141390199234256, 53633194222120752, 2520189436004377296, 118422087020288430408, 5564578001118314478240, 261475955285477822620512, 12286587622406034842484384, 577338880885792093267553208
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170767, although the two sequences are eventually different.
Computed with Magma using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(1081*t^4 - 46*t^3 - 46*t^2 - 46*t + 1).
a(n) = 46*a(n-1)+46*a(n-2)+46*a(n-3)-1081*a(n-4). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3-46*t^2 - 46*t+1), {t, 0, 20}], t] (* or *) Join[{1}, LinearRecurrence[ {46, 46, 46, -1081}, {48, 2256, 106032, 4982376}, 20] (* G. C. Greubel, Dec 12 2016 *)
coxG[{4, 1081, -46}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 01 2019 *)
PROG
(PARI) my(t='t+O('t^20)); Vec((t^4+2*t^3+2*t^2+2*t+1)/(1081*t^4-46*t^3 - 46*t^2-46*t+1)) \\ G. C. Greubel, Dec 12 2016
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5) )); // G. C. Greubel, May 01 2019
(Sage) ((1+x)*(1-x^4)/(1-47*x+1127*x^4-1081*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 01 2019
(GAP) a:=[48, 2256, 106032, 4982376];; for n in [5..20] do a[n]:=46*(a[n-1] +a[n-2] +a[n-3]) -1081*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, May 01 2019
CROSSREFS
Sequence in context: A049678 A162913 A156093 * A163829 A164348 A164693
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved