login
A162913
Number of reduced words of length n in Coxeter group on 48 generators S_i with relations (S_i)^2 = (S_i S_j)^3 = I.
0
1, 48, 2256, 104904, 4877472, 226750560, 10541488248, 490066437936, 22782847249104, 1059158680807752, 49239548471206560, 2289112271116376928, 106419233167075660536, 4947355938259459431984, 229999127520543810796752
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170767, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^3 + 2*t^2 + 2*t + 1)/(1081*t^3 - 46*t^2 - 46*t + 1)
MATHEMATICA
coxG[{3, 1081, -46}] (* The coxG program is at A169452 *) (* or *) LinearRecurrence[{46, 46, -1081}, {1, 48, 2256, 104904}, 30] (* Harvey P. Dale, Dec 30 2017 *)
CROSSREFS
Sequence in context: A301859 A233259 A049678 * A156093 A163266 A163829
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved