OFFSET
0,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..660
Index entries for linear recurrences with constant coefficients, signature (31, 31, 31, -496).
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 31*(a(n-1) + a(n-2) + a(n-3) - 16*a(n-4)).
G.f.: (1+x)*(1-x^4)/(1 - 32*x + 527*x^4 - 496*x^5). (End)
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(496*t^4-31*t^3-31*t^2 - 31*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{31, 31, 31, -496}, {1, 33, 1056, 33792, 1080816}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 496, -31}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[33, 1056, 33792, 1080816];; for n in [5..20] do a[n]:=31*(a[n-1]+ a[n-2]+a[n-3]-16*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved