login
A163216
Number of reduced words of length n in Coxeter group on 33 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
1
1, 33, 1056, 33792, 1080816, 34569216, 1105674768, 35364307968, 1131105025776, 36177678932736, 1157120181575952, 37009757234816256, 1183733679862288368, 37860973146888460800, 1210959282493490855952, 38731766829339020895744
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170752, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(496*t^4 - 31*t^3 - 31*t^2 - 31*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 31*(a(n-1) + a(n-2) + a(n-3) - 16*a(n-4)).
G.f.: (1+x)*(1-x^4)/(1 - 32*x + 527*x^4 - 496*x^5). (End)
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(496*t^4-31*t^3-31*t^2 - 31*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{31, 31, 31, -496}, {1, 33, 1056, 33792, 1080816}, 20] (* G. C. Greubel, Dec 11 2016 *)
coxG[{4, 496, -31}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 28 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)) \\ G. C. Greubel, Dec 11 2016, modified Apr 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^4)/(1-32*x+527*x^4-496*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[33, 1056, 33792, 1080816];; for n in [5..20] do a[n]:=31*(a[n-1]+ a[n-2]+a[n-3]-16*a[n-4]); od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A159675 A162837 A324951 * A163567 A164049 A164669
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved