|
|
A163215
|
|
Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I.
|
|
1
|
|
|
1, 32, 992, 30752, 952816, 29521920, 914703360, 28341043200, 878114994960, 27207394552800, 842990180666400, 26119092121336800, 809270367424023600, 25074322053313752000, 776899354951763496000, 24071343043338616536000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
The initial terms coincide with those of A170751, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
a(n) = 30*(a(n-1) + a(n-2) + a(n-3)) - 465*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 31*x + 495*x^4 - 465*x^5). (End)
|
|
MATHEMATICA
|
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(465*t^4-30*t^3-30*t^2 - 30*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{30, 30, 30, -465}, {1, 32, 992, 30752, 952816}, 20] (* G. C. Greubel, Dec 10 2016 *)
|
|
PROG
|
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[32, 992, 30752, 952816];; for n in [5..20] do a[n]:=30*(a[n-1]+a[n-2] +a[n-3]) -465*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|