login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A163215 Number of reduced words of length n in Coxeter group on 32 generators S_i with relations (S_i)^2 = (S_i S_j)^4 = I. 1
1, 32, 992, 30752, 952816, 29521920, 914703360, 28341043200, 878114994960, 27207394552800, 842990180666400, 26119092121336800, 809270367424023600, 25074322053313752000, 776899354951763496000, 24071343043338616536000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170751, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
FORMULA
G.f.: (t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(465*t^4 - 30*t^3 - 30*t^2 - 30*t + 1).
From G. C. Greubel, Apr 28 2019: (Start)
a(n) = 30*(a(n-1) + a(n-2) + a(n-3)) - 465*a(n-4).
G.f.: (1+x)*(1-x^4)/(1 - 31*x + 495*x^4 - 465*x^5). (End)
MATHEMATICA
CoefficientList[Series[(t^4+2*t^3+2*t^2+2*t+1)/(465*t^4-30*t^3-30*t^2 - 30*t+1), {t, 0, 20}], t] (* or *) LinearRecurrence[{30, 30, 30, -465}, {1, 32, 992, 30752, 952816}, 20] (* G. C. Greubel, Dec 10 2016 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5)) \\ G. C. Greubel, Dec 10 2016, modified Apr 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5) )); // G. C. Greubel, Apr 28 2019
(Sage) ((1+x)*(1-x^4)/(1-31*x+495*x^4-465*x^5)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 28 2019
(GAP) a:=[32, 992, 30752, 952816];; for n in [5..20] do a[n]:=30*(a[n-1]+a[n-2] +a[n-3]) -465*a[n-4]; od; Concatenation([1], a); # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A264344 A228983 A162836 * A163565 A164036 A164668
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 03:03 EDT 2024. Contains 375842 sequences. (Running on oeis4.)