The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A162702 G.f. is the polynomial (Product_{k=1..25} (1 - x^(3*k)))/(1-x)^25. 1
 1, 25, 325, 2924, 20450, 118430, 590849, 2609075, 10399220, 37970400, 128478090, 406588845, 1212516825, 3428709585, 9241809900, 23850595861, 59158506235, 141497700775, 327304605615, 734057883375, 1599785434275, 3394818382216 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is a row of the triangle in A162499. Only finitely many terms are nonzero. The polynomial has degree 950. The polynomial is palindromic and all terms are nonzero. Hence, this sequence has 951 nonzero terms. - T. D. Noe, Apr 06 2011 LINKS G. C. Greubel, Table of n, a(n) for n = 0..950 MAPLE m:=25: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018 MATHEMATICA CoefficientList[Series[Times@@Table[1-x^p, {p, 3, 75, 3}]/ (1-x)^25, {x, 0, 25}], x]  (* Harvey P. Dale, Apr 06 2011 *) PROG (PARI) x='x+O('x^50); A = prod(k=1, 25, (1-x^(3*k)))/(1-x)^25; Vec(A) \\ G. C. Greubel, Jul 06 2018 (MAGMA) m:=50; R:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..25]])/(1-x)^25; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018 CROSSREFS Sequence in context: A188355 A243089 A079875 * A010977 A022589 A199657 Adjacent sequences:  A162699 A162700 A162701 * A162703 A162704 A162705 KEYWORD nonn AUTHOR N. J. A. Sloane, Dec 02 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 11 13:38 EDT 2020. Contains 335626 sequences. (Running on oeis4.)