login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A162703
Palindromes in A005448.
2
1, 4, 15151, 45154, 66466, 92629, 98689, 4976794, 6424246, 648616846, 136287949782631, 479573060375974, 69465717171756496, 4345218593958125434, 42097537753535773579024, 58071646151315164617085, 6220959179720279719590226, 458122911526080625119221854
OFFSET
1,2
COMMENTS
Essentially the palindromes which are sums of three consecutive triangular numbers T.
Indices of the centered triangular numbers: 1, 2, 101, 174, 211, 249, 257, 1822, 2070, 20795, 9531980, 17880587, 215198695, ..., (A195903). - Robert G. Wilson v
a(18) > 10^25. - Donovan Johnson, Sep 29 2011
a(31) > 10^40. - Patrick De Geest, May 23 2021
LINKS
Terry Trotter, Polygonal Numbers from the Wayback machine
FORMULA
a(n) = (3*m^2 - 3*m + 2)/2 or a(n) = (3*n^2 + 3*n + 2)/2 with n = m - 1.
EXAMPLE
T(99) + T(100) + T(101) = 15151.
T(172) + T(173) + T(174) = 45154.
MATHEMATICA
n = 1; lst = {}; While[n < 10^10, ctn = 3 n (n - 1)/2 + 1; id = IntegerDigits@ ctn; If[id == Reverse@id, AppendTo[lst, ctn]; Print[{n, ctn}]]; n++ ]; lst (* Robert G. Wilson v *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Claudio Meller, Jul 11 2009
EXTENSIONS
Edited and extended by R. J. Mathar and Robert G. Wilson v, Jul 13 2009
a(14)-a(17) from Donovan Johnson, Sep 29 2011
a(18)-a(30) from Patrick De Geest, May 23 2021
STATUS
approved