login
G.f. is the polynomial (Product_{k=1..25} (1 - x^(3*k)))/(1-x)^25.
1

%I #19 Sep 08 2022 08:45:46

%S 1,25,325,2924,20450,118430,590849,2609075,10399220,37970400,

%T 128478090,406588845,1212516825,3428709585,9241809900,23850595861,

%U 59158506235,141497700775,327304605615,734057883375,1599785434275,3394818382216

%N G.f. is the polynomial (Product_{k=1..25} (1 - x^(3*k)))/(1-x)^25.

%C This is a row of the triangle in A162499. Only finitely many terms are nonzero.

%C The polynomial has degree 950. The polynomial is palindromic and all terms are nonzero. Hence, this sequence has 951 nonzero terms. - _T. D. Noe_, Apr 06 2011

%H G. C. Greubel, <a href="/A162702/b162702.txt">Table of n, a(n) for n = 0..950</a>

%p m:=25: seq(coeff(series(mul((1-x^(3*k)),k=1..m)/(1-x)^m, x,n+1),x,n),n=0..21); # _Muniru A Asiru_, Jul 07 2018

%t CoefficientList[Series[Times@@Table[1-x^p,{p,3,75,3}]/ (1-x)^25, {x,0,25}],x] (* _Harvey P. Dale_, Apr 06 2011 *)

%o (PARI) x='x+O('x^50); A = prod(k=1, 25, (1-x^(3*k)))/(1-x)^25; Vec(A) \\ _G. C. Greubel_, Jul 06 2018

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..25]])/(1-x)^25; Coefficients(R!(F)); // _G. C. Greubel_, Jul 06 2018

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Dec 02 2009